spatPomp
concerns inference for nonlinear partially-observed Markov process
models having a spatial unit structure in addition to the temporal
Markovian property of the latent process. Such a model is called a
SpatPOMP. For example, ecological metapopulation models consist of
spatial units corresponding to distinct, interacting sub-populations.
Each unit may itself consist of multiple interacting species. In
spatPomp, models can be represented by specifying the
latent dynamic process and how it is measured. The
spatPomp package builds on pomp, and
its base class, spatPomp
extends the pomp
class pomp
. Therefore, all algorithms and methods provided
by pomp are accessible in spatPomp.
However, practical analysis of high-dimensional systems can take
advantage of the additional unit structure that POMP models do not
necessarily possess.
Algorithms currently provided by spatPomp include
the following:
- Guided intermediate resampling filter,
girf
- Block particle filter,
bpfilter
- Adapted bagged filter,
abf
- Ensemble Kalman filter,
enkf
- Iterated GIRF for parameter estimation,
igirf
- Iterated bpfilter for parameter estimation,
ibpf
- Iterated ensemble Kalman filter for parameter estimation,
ienkf
In addition, the particle filter provided by pomp as
pfilter
and the corresponding iterated filter,
mif2
, are useful for validating spatPomp
models and workflows on small subsets the spatial units.
spatPomp is open-source, run by the core
development team. All are welcome to join the development of
spatPomp by contributing methods or models. Please let
the developers know if you find spatPomp useful and if
you publish results obtained using it!
The latest development version of spatPomp is
available on GitHub and versions
are occasionally uploaded to CRAN. Other
relevant resources are:
Asfaw, K., Park, J., King, A. A., and Ionides, E. L. (2024).
spatPomp: An R package for spatiotemporal partially observed Markov
process models. Journal of Open Source Software, 9, 7008. doi.
A tutorial on spatiotemporal partially observed Markov process
models via the R package spatPomp. pdf. R
script. arxiv. GitHub.
A tutorial on the iterated block particle filter. pdf. R
script. GitHub.
Papers using spatPomp include the following:
- Gu, H., Li, J., Sun, W., Li, M., Leung, K., Wu, J. T., Yuan, H.,
Wang, M. H., Yang, B., McKay, M. R., Ning, N., & Poon, L. L. (2025).
Optimizing Global Genomic Surveillance for Early Detection of Emerging
SARS-CoV-2 Variants. arXiv:2502.00934. doi.
- Ionides, E. L., Asfaw, K., Park, J., and King, A. A. (2023). Bagged
filters for partially observed interacting systems. Journal of the
American Statistical Association, 118, 1078-1089. doi. arxiv. code.
- Ionides, E. L., Ning, N. and Wheeler, J. (2022). An iterated block
particle filter for inference on coupled dynamic systems with shared and
unit-specific parameters. Statistica Sinica, prepublished
online. doi. arxiv. code.
- Li, J., E. L. Ionides, A. A., King, M. Pascual and N. Ning (2024).
Inference on spatiotemporal dynamics for coupled biological populations.
Journal of the Royal Society Interface, 21(216), 20240217. doi. arxiv. code. software
- Ning, N. and Ionides, E. L. (2023). Iterated block particle filter
for high-dimensional parameter learning: Beating the curse of
dimensionality. Journal of Machine Learning Research 24(82),
1-76. pdf. arxiv.
- Perez-Saez, J., Bellon, M., Lessler, J., Berthelot, J., Hodcroft, E.
B., Michielin, G., Pennacchio, F., Lamour, J., Laubscher, F. L.,
L’Huillier, A. G., Posfay-Barbe, K. M., Maerkl, S. J., Guessous, I.,
Azman, A. S., Eckerle, I., Stringhini, S., & Lorthe, E. (2025).
Evolving infectious disease dynamics shape school-based intervention
effectiveness. Nature communications, 16(1), 6597. doi.
- Wheeler, J., Rosengart, A. L., Jiang, Z., Tan, K., Treutle, N. and
Ionides, E. L. (2024). Informing policy via dynamic models: Cholera in
Haiti. PLOS Computational Biology, 20(4), e1012032. doi. arxiv. code. software.
- Zhang, B., Huang, W., Pei, S., Zeng, J., Shen, W., Wang, D., Wang,
G., Chen, T., Yang, L., Cheng, P., Wang, D., Shu, Y., & Du, X.
(2022). Mechanisms for the circulation of influenza A (H3N2) in China: A
spatiotemporal modelling study. PLOS Pathogens, 18(12),
e1011046. doi.